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for Hydrogen we have ‘cp= 3.8~10-~~sec. at T = 14.89”Ii and TV= 5.39~10‘~~ sec. at 
T = 19,92”li, while for Argon we have T,,= 4.798~10-*~ sec. at T = 90.03 ‘Ii. 

Combining (20) and (22) we obtain an inverse relationship between ‘sp and t,] , given 

bY mkl’ 

r =<Kz> P 
(3) 
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Construction of the defining equations for the critical equilibrium state of an incompres- 
sible, continuous, free-running medium with dry friction [l], presents certain fundamental 
difficulties. As we know, the lines (areas) of the critical equilibrium state (along the tan., 
gents up to which the Coulomb’s condition holds),are situated symmetrically, at an angle 
a to the direction of the highest normal stress and only when the angle of internal fric- 
tion is equal to zero CD = 0 (the case of the perfectly plastic body), then the lines of the 
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critical equilibrium coincide (a = ‘icn) with the lines of the maximum shear rate (the 
second Saint-Venam condition g] specifying the plastic state). 

If, on the other hand, 9 # 0, then the angle between the lines of the critical equilib- 
rium state is equal to 2a = ‘/2zt- cltr , i.e. it is different from QO’, and the second Sainr- 

Venant condition no longer holds. Thus, the formal incorporation [3] of the hypothesis 

that the stress and the rate of strain tensors are collinear in 2 free-running, incompressible 
me.dium with, dry friction conradicE; the physical model (see e. g. [S]) in which the direc- 

* tion of the largest displacement coincides wit h the direction of the greatest resistance of 
the r!l&iUrn 

For this reason the author of [4] proposed the condition of coincidence of only a single 
slip line (maximum shear rate) with the critical equilibrium line. Other variants of the 
method of constructing the theory also exist (see e. g. IS]). It should however be noted 
that the defining relations proposed in [S] do not satisfy the usual invariance conditions 
163 for the mechanics of continuous media. 

In this paper we introduce a generalized formulation of the critical equilibrium con- 

dition, according to which the reaction R of the medium balancing the stresses on the 
critical equilibrium line (area) makes the angle 6 with the tangent to this line. Assuming 
that the force H is collinear with the direction of the maximum shear, we find, that the 
angle 6 is equal to the true angle of internal friction $, while the effective critical 

equilibrium condition reduces, after redefining the internal friction and cohesion angles, 
to the usual form of the Coulomb’s condition. Thus we arrive at such interpretation of the 
critical steady state of the free-running medium with dry friction which does not contra- 

dict the hypothesis of collinearity of the stress and rate of strain tensors. 

1, We shall denote the principal stresses by 61 and oa ( ut > 0 corresponds to com- 

pression). Then the values of the tangential T,, and normal a,, stress components on the 

area inclined to the I-axis at the angle a are 
61 -62 

= -sin22, 
al+ a2 R- % 

7 n 2 
Q =-- - cos 23 n 2 2 (1.1) 

and we have 
dr, I da, = ctg 2 Ial sgna (1.2) 

We shall assume that the considered macro-point of the medium is in its critical equi- 
librium state, provided that one of the elementary areas (the critical equilibrium area) 
passing through this point is such, that the stresses acting on it are subject to the general- 
ized Coulomb’s condition, i. e. they are balanced by the reaction force, the latter being 

the dry friction force R acting, in general, at the angle fi to the area in question 

‘F, co9 fi - a, sin B = R, 7, sin b + u, co9 j3 = N 

R = NB tg U”, + c& 0 = sgn R, N>O (f-3) 

where tD, is the true angle of internal friction and C, denotes true cohesion. 
Conditions (1.3) can be reduced to 

v,‘=a,tg@+0@0)+Rl 
0 cos @)o 

cos (P + e%) (1.4) 

and we have. dr. 
---4 L”= t g (8 + 6ar,o) 
&, 

(1.5) 

Comparing (I. 2) and (.I. Sj we fink rl?c angle a cif inclination of the area (line) of 

critical equilibrium as the solution of 
ctg 2 I$.% I qua = tg (6 + 6@,) 
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i. e. 
Ial = ‘/,n - ‘Is (B + ecD,) sgnu (i.6) 

2. We shall further assume that the force R is collinear with a certain direction, which 
makes the angle 5 with the I -axis. Then fl = (1 1 1 - 1 a I) sgn a (we measure a and 
k in the same direction), and from (1.6) we have 

I a I u W -I. VP (1 u 1 - I A 1 - a+,0 RRil n) 
which in turn yields 

I a I + I A I + % = W, 6gna= 1 

lal+l~l-%=Vm, flagna= -i (2.1) 

We shall now assume that the force R is collinear with the tangent, at the point con- 
sidered, to the slip line (*) (lines of the maximum shear rate rff = ell, i # I) 

(2.2) 

and, that it is of the same sign as the rate of shear Y along the slip line 6 = agn ymRx. 
If the stress and rate of strain tensors are collinear (the hypothesis of [3]). then 

IAl = V,n, la 1 = V,n -00, 8 = @oona, esgna- 1 (3.3) 
or 

ihI= V,n, lal=l/,n+@o, B=-Q)osgna, 8sgna= -1 

We can easily see that the condition 

6agna= i [agn ymax ,= agn a, I ymaxl = ‘1~ I El - %il 

corresponds to the inequality el > e, , the maximum (in modulo) stresses and principal 
strain rates coincide. 

In this case we have, for an incompressible medium (el + e, = 0). the following 
expression for the dissipation of mechanical work per unit (elementary) volume 

w’ = ale1 + crl~ = 
fer, - ed) (er - ea) 

=2A 
( 

e1 - ez er - ez 
2 A’ET--- 

2 > 
where A’ denotes the dissipation on each (of the two) slip area. 

If 0agna= -i , then the minimum principal strain rate is directed along the axis 
of the maximum principal stress and this would imply W’ = 0 , therefore we choose the 
condition 6 agn a = 1 which leads to the condition of collinearity in any coordinate 
system Qll - %a s11 - e2a 

-xi-= em 
(2.4) 

This, in turn, implies that, by the virtue of the incompressibility of the medium 

(art + ass - 0), the tensor-deviators of the stresses and strain rates 

en- -+in-qy, *,=~.(!&%p2) 

(2.5) 
ll#h, = CQ,, 6'>0 

are coaxial and similar. 

When (2.3) holds then,naturally, the critical equilibrium relation (1.4) is reduced to 
the usual form of the Coulomb’s condition 

* ) Our procedure differs from the usual in that here it is essential to obtain the slip lines 
(lines of the maximum shear rate)and the critical equilibrium lines(see the condition 

(1.3)). 


